I used the same speed I used in my other analysis (appended below) - based upon an air temperature of 72 degrees
Then I calculated the difference in time between the last bullet sound (T1) and the corresponding last report sound (T2).
Your arithmetic is fine, your logic is a FAIL.
You failed to answer the question: "Why does that measure the distance from the video taker to the shooter?"
You have still not identified what sounds you refer to.
What is the first sound of a bullet? The initial sound wave as heard at the recording location?
What is the last sound of the bullet? An echo? Another bullet?
In this case, the video taker was 400 yards away from the shooter.
The sound wave originated at position a and traveled 400 yards to get to the videotaker at position b. That took ~1.07 seconds for the sound to travel.
If you measure the first sound of the bullet as when it traveled faster than sound, and then struck something or whizzed past making a sound, your ~1.07 second measurement is impossible as the elapsed time difference would be the time it took the sound wave to travel (~1.07s) minus the time it took the bullet to travel. Your calculation as the bullet traveling at aproximately the speed of light.
The bullet and the sound both travel the same path at the same time, at different velocities. As the sound takes ~1.07 seconds, the difference in their arrival times cannot be ~1.07s.
Two cars travel an 80 mile strip. One travels 80 mph and crosses the finish line in 1 hour. The other travels 40 miles an hour and crosses the finish line in 2 hours. If the slow car went half the speed of the faster car, and the time difference was 1 hour, the distance can be calculated as the velocity of the faster vehicle (80 mph) divided by the velocity of the slower vehicle (40 mph) time the time difference (1 hour).
Your calculation is good arithmetic but gibberish logic. ~1.07 seconds is simply the time for sound to travel from Mandalay Bay to the target recording location.
An echo of a sound originating at position a results from the sound wave traveling the distance originating point a to recording position b, proceeding an unidentified distance to the reflective surface c, and returning to position b. The sound must arrive/leave recording position b at ~1.07 seconds, travel to a reflective surface, and return. The elapsed time must exceed 1.07s.
In measuring the distance of a lightning bolt, you can use the sighting of the lightning bolt, the light traveling at the speed of light, as the originating time of the initiating event. You can count until the slower moving sound wave arrives, and calculate distance to the lightning. This is because the velocity of light is so great, its travel time over relatively short distances is negligible.
Unfortunately, even with a Boy Scout merit badge, an audio recording from 400 yards away does not identify distance of the originating event. Bullets do not travel at the speed of light, or anywhere near it.
The way you know the distance from the Mandalay Bay to the event location is by measuring it.
How do you know that that is the original video? I haven't found an original source of it.
The Mandalay Bay is a public location that is clearly documented by, among others, Google. For the geography of the location, it does not appear necessary to present a half-dozen sources to verify that the building is situated as it is, where it is. There is nothing controversial about the layout of the land.
I have yet to see any depiction of Mandalay Bay without an entrance and a taxi stand, but if you know of one, please present it.
"For example, if the microphone is adjacent to the victim (such as a 911 recording might be), the equation for determining the distance becomes: t=tb - ts= d/Vb-d/Vs If the muzzle blast duration obscures the sound of the bullet hitting the target, simple inspection of the sound waveform is insufficient. "
I took their formula, built a spreadsheet, and plugged in 223 balistic data generated via shooterscalculator.com:
Important to note:
* Presently we don't have information regarding specificaly which weapons and amunition were used. So the ballistic data was generated with a guestimate 223 configuration.
* My DAW (Sonar) doesn't appear to have the capability of capturing a sound spectrogram like the ones the authors of the study produced; but after reading their commentary on the blast noise obscuring impact noise, I filtered the crowd noise, and filtered/looked alternately for the report and then the high energy impact sounds - and I revised T1 and T2 accordingly.
More accurate results could possibly be obtained if the corresponding burst sequence on the Taxi-Driver video is identified and aligned, as the taxi-driver's audio contains only the muzzle blast and echo. It doesn't have the crowd and impact noise to obscure the muzzle events.
Unfortunately, even with a Boy Scout merit badge, an audio recording from 400 yards away does not identify distance of the originating event. Bullets do not travel at the speed of light, or anywhere near it.
You're wrong. He is adjusting for the speed of sound on the night in LV. The speed of sound is 1100 feet/minute as a decent estimate anywhere (1,087 ft/s more accurately) but he is correcting for altitude and weather conditions. This has nothing to do with speed of light since the muzzle flashes weren't visible from the concert area in any video I've seen.
If the GPS position is being continuously recorded or if the people recording at the concert (hundreds or thousands) were recording video, you can readily determine their position and distance from the shooter pretty easily, just based on the time at which the sound of gunshots arrive, knowing the distance of their source. They can only be described as a portion of an arc, bounded by the concert area rectangle, that constitutes a circle around the shooter's location in the hotel. That's a pretty sound way to determine a fixed location.
This is true of all these A/V recordings of the event. You can determine very accurately their location from the video and the audio timing, even more so if a bullet flies past their camera.
VxH does have a sound method for analysis but only if he can gather enough A/V recordings from the concert and anywhere else, like the taxi driver. I am curious that we have seen no reporting that police requested the concert goers to upload their videos from that night. Maybe the sheriff and the FBI have really dropped the ball on this. Usually, the FBI is pretty sharp on audio lab stuff.
I don't believe this crackpot's lamebrain hypothesis. He is claiming verifiable acoustic signature analysis based on somebody's cell phone audio capture that is not controlled in anyway.
You're wrong. He is adjusting for the speed of sound on the night in LV. The speed of sound is 1100 feet/minute as a decent estimate anywhere (1,087 ft/s more accurately) but he is correcting for altitude and weather conditions. This has nothing to do with speed of light since the muzzle flashes weren't visible from the concert area in any video I've seen.
He is absolutely wrong and just bullshitting again. Your observations are irrelevant to his claim being accurate. His claim is 100% impossible.
At #42, Vxh compares two times from the Taxi Driver video:
An analysis of two sequential burts of gunfire between:
["Taxi Driver Video" the Zapruder Film of the Las Vegas shooting UNCUT / UNEDITED]
At #43, citing #42, he claims a total distance of 1208.80 feet.
He is measuring distance of sound, not light/bullet speed or travel distance to a target.
If, as claimed, the total distance for the sound is 1,208.80 feet, that includes the echo time according to his own graphic in the same post.
His graphic indicates that the total distance is twice the echo distance, or the echo distance (presumably unobstructed) is half the total distance.
He adjusted the distance by 100%.
This purports to be from the taxi video. The sound of the gunshot was recorded almost immediately. The recorded returning sound is from an unknown reflecting distance.
If the reflecting surface was plucked from his butt to be the bandstand, the sound would have traveled 1208 feet to the bandstand, and 1208 feet back to the taxi, if the path back at ground level were unobstructed.
You cannot adjust to a 1,208 foot total distance, unless the sound turned around and came back unobstructed at 604 feet. Unless the sound somehow returned at the speed of light, instead of the speed of sound, the total distance must be double the 1,280 feet that he claimed. He is again incapable of describing the data on his own graphic.
Of course, the sound could have bounced off something 640 feet away and come back to the taxi. The Reflecting surface is unknown. What sound cannot do is zing into something 1,280 feet away, and come back from that point, and travel a total distance of 1,280 feet.
He is claiming verifiable acoustic signature analysis based on somebody's cell phone audio capture that is not controlled in anyway.
Even if the audio capture hasn't been altered there are still parameters required to make the ballistic calculations to "prove" his conclusion of a second shooter.
As I can do simple calculation, unlike you, I need no additional source to discover the bullshit.
Sound cannot travel 1280 feet to a target and come back to the taxi, and travel a total distance of 1280 feet. Not even a super genius can make sound do that. But that is what you claimed, that the sound traveled a total distance of 1280 feet, based solely on the taxi driver recording.
It means that total distance the time traveled is two times the echo travel distance. T1 on the taxi recording is almost instantaneous after the shot, a very short travel distance. Then the sound traveled 1208 feet to the target area, and at least 1208 feet back (unobstructed). Do arithmetic much?
The total distance will be double the distance if unobstructed and reflected by something at the target area straight back to the taxi. If the sound travels another mile and gets reflected back from a distant building, it would take even longer.
No, it means the number "1208" (and 1280) isn't referenced by that graphic because the audio data on that graphic pertains to a completely different discussion of a completely different audio data set.
At #42 he stated, all in reference to the Taxi Driver video:
T1: Time from start of video (1minute N seconds) at the time of the last shot in the burst. T2: Time from the start of the video (1minute N seconds) at the time of the echoed sound event corresponding to T1. TempF: the air temperature (72 degrees F) FPS: 1130 ft per second -- The speed of sound at 72 degrees F Elapsed Time: T2 minus T1, the number of seconds between the last shot, and the echo of the last shot in each burst. Total Distance: Elapsed Time * FPS = the total distance traveled between T1 and T2. Echo Distance = The distance the echo traveled from the aiming point back to the point of origin.
T1 is at the taxi. T2 is out and back and also recorded at the taxi.
Echo distance is NOT the distance traveled from the aiming point to the point of origin. It is the time between T1 as recorded at the taxi, and T2 as recorded at the taxi. T1 and T2 are derived solely from the recording at the taxi, and do not tell either the point of origin or the point of aim.
T2 could have reached the taxi by being reflected off anything the sound wave hit.
If the distance between the taxi and the target were 400 yards, then for the sound to have come from the target area back to the taxi would require a total travel of 800 yards.
At #43, he claims, in refrence to T1 and T2 on the taxi recording: "Total distance: 1208.80"
T2 - T1 is the difference in the time of arrival at the taxi, and the time to travel to a reflective surface and to make the return trip to the taxi. If that indicates the total distance sound traveled of 1280 feet, the sound would have to have been reflected from not more than 640 feet away.
#42. To: nolu chan, A K A Stone, Tooconservative, Klingon Ambassador (#40) (Edited)
rgb(255,255,255); TEXT-INDENT: 0px; -webkit-text-stroke-width: 0px;
text-
decoration-style: initial; text-decoration-color: initial; font-
variant-
ligatures: normal; font-variant-caps: normal">As any Boy Scout with one of these...
Then I calculated the difference in time between the last bullet sound (T1) and the corresponding last report sound (T2).
T2-T1 = time thereporttraveled = 1.07
1.07 * FPS of 1130.8 = 1208.8
==========================
An analysis of two sequential burts of gunfire between: ["Taxi Driver Video" the Zapruder Film of the Las Vegas shooting UNCUT / UNEDITED] https://www.youtube.com/watch ?v=mBbOFwWquAw&feature=youtu.be&t=1m7s and https://www.youtube.com/watc h?v=mBbOFwWquAw&feature=youtu.be&t=1m24s =============== T1: Time from start of video (1minute N seconds) at the time of the last shot in the burst. T2: Time from the start of the video (1minute N seconds) at the time of the echoed sound event corresponding to T1. TempF: the air temperature (72 degrees F) FPS: 1130 ft per second -- The speed of sound at 72 degrees F Elapsed Time: T2 minus T1, the number of seconds between the last shot, and the echo of the last shot in each burst. Total Distance: Elapsed Time * FPS = the total distance traveled between T1 and T2. Echo Distance = The distance the echo traveled from the aiming point back to the point of origin. ===============
Conclusion: Burst B is NOT two weapons being fired simultaneously. It is one weapon being fired at a more distant target. The longer distance, observable in the period between Burst B's T1 and T2, manifests a corresponding longer period of reverb. It is the reverb that is being incorrectly interpreted as a second weapon (and second shooter) firing at the same time.
This is an open book quiz. The answers are ECHO'd on the graphic.
You are just yukon being yukon. This is not a quiz. Consider it your final exam. You FAILED.
If the distance from the taxi to the point the sound was reflected back is 400 yards, the sound had to travel a total distance of 800 yards, or about 2400 feet.
Keep digging. With yourself for an expert source, it is no wonder that your conclusion is impossible bullshit.
If T2 - T1 at the taxi were to indicate a total distance of sound travel of 400 yards, the sound went 200 yards to get to a reflective surface and 200 yards to come back to the taxi.
I am curious that we have seen no reporting that police requested the concert goers to upload their videos from that night. Maybe the sheriff and the FBI have really dropped the ball on this.
* My DAW (Sonar) doesn't appear to have the capability of capturing a sound spectrogram like the ones the authors of the study produced....
Regarding your Digital Audio Workstation (DAW) for music, you might indicate what the abbreviation stands for, and with Sonar, you might indicate that it is a company brand name, and does not relate to SONAR.
There is also a noticeable lack of muzzle flashes from the 32nd floor.
There is a video (somewhere in the haystack now) that has audio of what sounds like several single hp rifle cracks at the start of the shooting - presumably at the fuel tanks.
Initial shots at 3:12.
Las Vegas Shooting First Actual Shots - Rare
Tall Ace of Spades Published on Oct 7, 2017
Most footage doesn't capture the real, initial, non automatic shots shown here that the shooter probably used as test shots before using the bump stock and continuous fire when the next song starts. People are clearly trying to leave the scene shortly after the initial shots which start at 3:12.
The spectrogram capabilities of my DAW are very limited so I looked around for a free utility and, not finding anything suitable, decided to build my own utility for creating a spectrogram.
Here's what I'm seeing in the relevant section of audio referenced in the "Video [that] claims shooter dressed as police".
* This audio was filtered to remove as much of the crowd noise as possible. * Lower frequency sounds (the muzzle reports) are graphed at the top - higher energy sounds towards at the bottom. * More work to be done adding time and frequency indexes, zooming, anotating etc but it looks promising.
This is just a progress report. I will document the complete methodology as time allows.
Yep. You've already demonstrated you can cut and paste.
Two completely different sets of sound events and data being discussed and confused there.
yukon, you have derived T1 and T2 from the Taxi recording. The difference in the times does not reveal point of origin or point of aim. The difference in the two times can be used to derive the length of time for sound to travel to a reflective surface and return. A total distance of 1,280 feet would be for a round trip. Half of that would put the reflective point at 640 feet, and your bullshit would show a shooter midway between the taxi and the taxi and the music venue. FAIL.
T1 And T2 were explicitly derived from the same Taxi tape.
If the total distance the sound traveled is 1208 feet, and the sound went from the taxi and came back, the furthest point the sound got to was about 604 feet away.
T1 And T2 were explicitly derived from the same Taxi tape.
Nope. T1 and T2 are just generic labels for Time 1 and Time 2.
In your #42, you provided two Youtube links which were broken with extra spaces in the middle. I have them below in a usable form. Anyone may observe clearly that the first is a link to 1m7s mark of the video, and the second is a link to the 1m24s mark of the same video, i.e. 14 seconds apart. Points 14 seconds apart were chosen because REASONS.
Anyone going to either link will find themselves in the Taxi Lady video.
And here are your exact words at #42 (emphasis added)
I used the same speed I used in my other analysis (appended below) - based upon an air temperature of 72 degrees
Then I calculated the difference in time between the last bullet sound (T1) and the corresponding last report sound (T2).
[graphic omitted]
T2-T1 = time the report traveled = 1.07
1.07 * FPS of 1130.8 = 1208.8
==========================
[graphic omitted]
An analysis of two sequential burts of gunfire between: ["Taxi Driver Video" the Zapruder Film of the Las Vegas shooting UNCUT / UNEDITED] https://www.youtube.com/watch ?v=mBbOFwWquAw&feature=youtu.be&t=1m7s and https://www.youtube.com/watc h?v=mBbOFwWquAw&feature=youtu.be&t=1m24s =============== T1: Time from start of video (1minute N seconds) at the time of the last shot in the burst. T2: Time from the start of the video (1minute N seconds) at the time of the echoed sound event corresponding to T1. TempF: the air temperature (72 degrees F) FPS: 1130 ft per second -- The speed of sound at 72 degrees F Elapsed Time: T2 minus T1, the number of seconds between the last shot, and the echo of the last shot in each burst. Total Distance: Elapsed Time * FPS = the total distance traveled between T1 and T2. Echo Distance = The distance the echo traveled from the aiming point back to the point of origin. ===============
NOTE: "1.07 * FPS of 1130.8 = 1208.8" is incorrect. 1.07 * 1130.8 = 1209.956.
NOTE: In the next mention FPS is 1130 ft per second at 72 degrees.
NOTE: If you are measuring time between two different gunshots, rather than a shot and its own echo, you cannot derive distance. You would be measuring the time between two shots, saying nothing of distance about either one.
The sounds are all from the Taxi Lady recording.
These sounds do not give the aiming point, or point of origin of the shots.
These sounds give the time sounds were recorded at the taxi.
A sound that traveled 1.07 seconds at the speed of sound went 1,209.1 feet. (1,130 * 1.07)
You cannot measure the Echo Distance from the aiming point back to the point of origin as there is no recording at the point of origin, the point of origin being the 32nd floor (supposedly). Both links go to the taxi video. The Echo Distance is from the point the sound reflected back, to the taxi location where it was recorded, following the path of the sound at ground level back to the taxi.
What is recorded on the Taxi Lady video is the sound that traveled from the 32nd floor to the taxi, and whatever may have come from elsewhere as a sound reflected back. For a sound and its echo to show up on the taxi video at a 1.07 second interval, it had to travel to a reflective surface and back in 1.07 seconds, going a total distance of 1,209.1 feet. The event venue was about 400 yards away.
For any recorded echo, the sound of the shot had to travel to the taxi, and the sound also had to travel from the 32nd floor to a reflecting surface and come back to the taxi. If the echo came from the venue area, 400 yards away, the echoed sound had to travel 400 yards to a reflective surface, then turn around and travel at least 400 yards, if the path were unobstructed at ground level, to the taxi location.
If 1,209.1 feet were one way, the round trip out and back to the 32nd floor would be about 2,418.2 feet. The path back to the taxi, if unobstructed would be somewhat shorter, as 1,209.1 would be the hypotenuse of a triangle, with the distance back to the taxi being the long side of the right triangle, if unobstructed. Any obstructions at ground level would cause the sound to take an indirect path back to the taxi.
You can make pretty graphics, and wonderful word salads, and throw around terms like relativity, but you cannot do simple calculation.
Your analysis is pretty, but it is complete bullshit. No echo traveled to the venue and returned in 1.07 seconds. For a sound recorded in the taxi, there can be no corresponding echo of that sound recorded 1.07 seconds later in the taxi, if the echo came from the venue area.
As relativity goes, you're relatively incompetent.
The one on the left pertains to audio from video recorded at the target - which is the subject of this thread "Video claims shooter dressed as police"
The one on the right pertains to audio recorded by the Taxi Driver.
Please explain to the class what the 1.0612 value under Ts=d/Vs is, and why T= Tb-Ts is the CORRECT calculation, incorporating muzzle velocity and ballistic deceleration, required to determine the distance to the shooter.
Please explain to the class what the 1.0612 value under Ts=d/Vs is, and why T= Tb-Ts is the CORRECT calculation, incorporating muzzle velocity and ballistic deceleration, required to determine the distance to the shooter.
It means you can put numbers into somebody's chart and present columns in fancy colors and lines with shadows. And then you can ask questions about what it all means.
The link up top looks interesting but does not work.
I was hiking in the mountains and I yelled, "Hello". Right after that I heard four other people yell 'hello', one after the other. And here I thought I was alone.
Not only did four people answer, but they answered from four different distances.
The first thing wrong with your spreadsheet chartoon is that column 3 is defined as [Vel x + y in ft/s].
You do not define x or y.
You did not provide the exact rifle and barrel length.
As for ammunition, your chartoon specified .223.
In your spreadsheet chartoon, you specified 62 grain, but fail to say what or why. A popular 223 is Remington Metal Case, 55 grain. It provides 3239 fps.
Heavier 62 grain ammunition tends to go slower.
Do you think .223 American Eagle (Federal) FMJ 62 grain ammunition was used. It provides 3,020 initial velocity.
Do you think Remington Core-Lokt 62 grain ammunition was used. It provides 3100 fps initial velocity.
Perhaps an Ultramax FMJ 62 grain. That provides 2925 fps.
Perhaps a UMC Remington Flat Base Closed Tip 62 grain. That provides 3100 fps.
Perhaps USA (Winchester) FMJ 62 grain. That provides 3100 fps.
223 Rem. Full Metal Jacket Boat-Tail ammunition provides 3240 muzzle velocity, however, it is 55 grain, not 62 grain.
You did not provide calculations on the spreadsheet chartoon you created.
Your showing of two different times on the taxi driver video is pure bullshit.
You have no idea of the delay of the muzzle blast to the taxi, or the route the sound took. You do not account the time that sound is traveling at least 341 feet while the bullet is traveling.
You have no idea of where the sound turned around to come back to the taxi, or what path the sound took to return to the taxi.
Your echo chartoon describes itself as "Test for ECHO."
The formula you are making believe you are using specifies things that have nothing to do with taxi driver distant echo recordings.
"A microphone was placed near the muzzle to record both the muzzle blast and the sound of the bullet hitting the deer."
The recording for this method is of the nearby muzzle blast and the sound of the bullet hitting the target. In the Las Vegas taxi, you have a shooter 338 feet up, and the taxi is down, to the side, and out from the hotel. The gunman is around the corner from the taxi, and you have an echo of the muzzle blast coming back, from an unknown reflecting surface, via an unknown indirect route to the taxi which is at ground level and not line of sight.
Using Sound of Target Impact for Acoustic Reconstructions of Shooting Events
By: Michael Courtney, PhD, and Amy Courtney, PhD, Ballistics Testing Group, Western Carolina University, Cullowhee, NC
Key Words: acoustic, reconstruction, shooting
Abstract
The sound of a bullet hitting a target is sometimes discernable in an audio recording of a shooting event and can be used to determine the distance from shooter to target. This paper provides an example where the microphone is adjacent to the shooter and presents the simple math needed in cases where the microphone is adjacent to the target.
[...]
Introduction
With surveillance systems becoming more ubiquitous in society, the number of shooting events being captured on audio is rapidly increasing. The sound of a bullet hitting a living target is very loud, almost as loud as the muzzle blast. This allows determination of the distance between the shooter and target if the time of the muzzle blast and target strike can be determined from an audio recording. If the location of the target is known, this greatly narrows possible locations of the shooter.
Method
Deer were shot with a muzzleloader shooting saboted .40 caliber pistol bullets impacting at velocities typical of the .40 S&W cartridge (1350 fps for a 135 grain bullet). A microphone was placed near the muzzle to record both the muzzle blast and the sound of the bullet hitting the deer. The time recorded between the muzzle blast and bullet striking the target represents the sum of the bullet time of flight (tb) and the time for the sound to return to the microphone from the target (ts),
t = ts + tb = d/Vs + d/Vb
where d is the target distance, Vs is the velocity of sound, and Vb is the average bullet velocity over the distance.
Vb depends on the distance, because the bullet is slowing in flight due to air resistance. Consequently, this equation must be solved using a ballistic calculator [1] and an iterative technique where one guesses different distances and computes the resulting ts and tb until there is agreement with the observed total time. The ballistic calculator requires knowing the muzzle velocity, ballistic coefficient of the bullet, air temperature, relative humidity, barometric pressure, and altitude. Converging on a distance is not hard since the total time is a monotonic and nearly linear function of the distance.
[...]
Note: the formula cited above is NOT the one cited by you. It relies on a microphone close to the muzzle also being close enough to the target to pick up the sound of the bullets striking, not an echo of the muzzle blast returning from some unknown point.
These results show that it is possible to use an audio recording of a shooting event to accurately determine the distance between the target and shooter. In cases where the location of the microphone is different, the mathematical details are different, but the ideas are the same. For example, if the microphone is adjacent to the victim (such as a 911 recording might be), the equation for determining the distance becomes:
t = tb ts = d/Vb d/Vs
Directly above is the precise formula you have cited on your spreadsheet chartoon:
Did you have a victim in the taxi? This formula only applies where the microphone is close to the victim (the target).
The discussion continues,
If the muzzle blast duration obscures the sound of the bullet hitting the target, simple inspection of the sound waveform is insufficient. Filtering techniques or spectrogram generation might recover the time of the target hit [1], or determination of the target hit might not be possible. However, in cases where the microphone is adjacent to the target and the bullet is supersonic, the sound of the bullet hitting the target occurs first, so it cannot be obscured by the muzzle blast.
The last part is what The Health Ranger used, and what I expanded upon.
At page 6,
A significant weakness in the study is the placement of the microphone near the muzzle of the gun, an unlikely location in most forensic cases, except for possible reconstructions of self-defense claims where the event is captured on a recording of the emergency call, officer involved shootings where the event is captured on a duty radio or other nearby microphone, and cases where the distance to the target is important to determining whether a soldier followed the applicable rules of engagement.
The only audio recordings you linked to are that of the Taxi Driver. The Taxi Driver recordings are irrelevant to the formula you cite.
T2 - T1 is not the time some report traveled. It is time difference between the time of the bullet arrival report and the sound arrival report. If your dippy calculation were correct, and the bullet were subsonic, T1 would be larger than T2, the the time some mythical report traveled would be a negative number. T2 - T1 is larger or smaller depending on the difference between the speed of the bullet and the speed of sound. If the difference of the flight time of the bullet and sound at 1200 feet were .2 seconds, you would calculate (T2 - T1) the muzzle report traveled 400 yards in .2 seconds. The speed of sound would still take 1.06 seconds to travel 1200 feet. Regardless of what T2 - T1 indicates, the muzzle report will travel 1200 feet in 1.06 seconds. The difference between the two report times indicates the difference in the velocity of time and the velocity of the bullet. If the sound took 1.06 seconds, the distance was 1200 feet. With the known distance, the velocity of the bullet can be calculated. If the bullet took 0.2 seconds less, the bullet made the trip in 0.86 seconds. Your T2 - T1 calculation is complete nonsense.
Picking back up with your spreadsheet chartoon, you seem to have some fascination with the number 1.062.
This number is not directly relevant to the Las Vegas shootings, but is the time for sound, adjusted for specific conditions, to travel 400 yards or 1200 feet at 1130 feet per second. Nothing in particular is known to have happened where the bullet traveled 400 yards or 1200 feet at ground level.
1200 feet is not the distance from the window in Paddock's room to anything in particular identified with the case.
Las Vegas Shooting: Chaos at a Concert and a Frantic Search at Mandalay Bay
New York Times UPDATED 10:30 PM ET, OCT. 2, 2017
Here is where 400 yards or 1200 feet come from. It is an estimated distance between Mandalay Bay and the Harvest Festival stage, at ground level, based on a Google image.
Target shooting was invented to keep people like you distracted so you don't get bored and hurt yourselves.
If you don't already do it,start tomorrow! You owe it to your obsessive self.
In the entire history of the world,the only nations that had to build walls to keep their own citizens from leaving were those with leftist governments.