[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Mail]  [Sign-in]  [Setup]  [Help]  [Register] 

Joe Rogan Experience #2138 - Tucker Carlson

Police Dispersing Student Protesters at USC - Breaking News Coverage (College Protests)

What Passover Means For The New Testament Believer

Are We Closer Than Ever To The Next Pandemic?

War in Ukraine Turns on Russia

what happened during total solar eclipse

Israel Attacks Iran, Report Says - LIVE Breaking News Coverage

Earth is Scorched with Heat

Antiwar Activists Chant ‘Death to America’ at Event Featuring Chicago Alderman

Vibe Shift

A stream that makes the pleasant Rain sound.

Older Men - Keep One Foot In The Dark Ages

When You Really Want to Meet the Diversity Requirements

CERN to test world's most powerful particle accelerator during April's solar eclipse

Utopian Visionaries Who Won’t Leave People Alone

No - no - no Ain'T going To get away with iT

Pete Buttplug's Butt Plugger Trying to Turn Kids into Faggots

Mark Levin: I'm sick and tired of these attacks

Questioning the Big Bang

James Webb Data Contradicts the Big Bang

Pssst! Don't tell the creationists, but scientists don't have a clue how life began

A fine romance: how humans and chimps just couldn't let go

Early humans had sex with chimps

O’Keefe dons bulletproof vest to extract undercover journalist from NGO camp.

Biblical Contradictions (Alleged)

Catholic Church Praising Lucifer

Raising the Knife

One Of The HARDEST Videos I Had To Make..

Houthi rebels' attack severely damages a Belize-flagged ship in key strait leading to the Red Sea (British Ship)

Chinese Illegal Alien. I'm here for the moneuy

Red Tides Plague Gulf Beaches

Tucker Carlson calls out Nikki Haley, Ben Shapiro, and every other person calling for war:

{Are there 7 Deadly Sins?} I’ve heard people refer to the “7 Deadly Sins,” but I haven’t been able to find that sort of list in Scripture.

Abomination of Desolation | THEORY, BIBLE STUDY

Bible Help

Libertysflame Database Updated

Crush EVERYONE with the Alien Gambit!

Vladimir Putin tells Tucker Carlson US should stop arming Ukraine to end war

Putin hints Moscow and Washington in back-channel talks in revealing Tucker Carlson interview

Trump accuses Fulton County DA Fani Willis of lying in court response to Roman's motion

Mandatory anti-white racism at Disney.

Iceland Volcano Erupts For Third Time In 2 Months, State Of Emergency Declared

Tucker Carlson Interview with Vladamir Putin

How will Ar Mageddon / WW III End?

What on EARTH is going on in Acts 16:11? New Discovery!

2023 Hottest in over 120 Million Years

2024 and beyond in prophecy

Questions

This Speech Just Broke the Internet

This AMAZING Math Formula Will Teach You About God!


Status: Not Logged In; Sign In

Science-Technology
See other Science-Technology Articles

Title: Does a Magnet Gun Conserve Momentum?
Source: wired
URL Source: http://www.wired.com/wiredscience/2 ... -magnet-gun-conserve-momentum/
Published: Dec 27, 2011
Author: Rhett Allain
Post Date: 2011-12-27 23:14:49 by A K A Stone
Keywords: None
Views: 1481
Comments: 2

The Gauss gun. A very simple, yet very cool device. Check out this video.

The Gauss gun. A very simple, yet very cool device. Check out this video.

There are many other examples of this Gauss gun. You can easily reproduce this yourself. You just need some magnets and steel balls (or balls of steel).

In terms of work-energy, I can think of the balls and the magnets as closed system. This means there is no work done and the energy equation can be written as:

Since the final ball speed is greater than the initial, the change in kinetic energy is a positive value. This means that the change in magnetic potential would have to be negative. Just what the heck is magnetic potential energy? Well, think of it this way. One ball on one side of the magnet plus 3 on the other takes less work to create than 4 on one side and none on the other. That is about the best I can say without getting too complicated. Momentum

Although the kinetic energy is not conserved, the momentum should be conserved. Why? It has to do with forces and time. Here is a diagram of the same balls before the collision.

Since forces are an interaction between objects, the force on the initially moving ball must be the same magnitude as the force the moving ball exerts on the rest of the stuff. Further, the time these forces act on each other have to also be the same. Looking at the momentum principle, it says (for the moving ball):

Same force (magnitude) and same time means the other stuff will have the same change in momentum (magnitude). This is conservation of momentum. It is a consequence of forces interacting in a closed system. Momentum Reality Check

Come with me. We will go to the lab and see if momentum is really conserved. Of course, there is one small thing. There is a frictional force on the rolling balls that is small. Less small is the frictional force on the magnets. But we can try anyway.

Here I reproduced the Gauss gun, but at a better viewing angle.

Does a Magnet Gun Conserve Momentum?

By Rhett Allain Email Author December 26, 2011 | 8:25 am | Categories: Dot Physics, Science Blogs

The Gauss gun. A very simple, yet very cool device. Check out this video.

There are many other examples of this Gauss gun. You can easily reproduce this yourself. You just need some magnets and steel balls (or balls of steel).

Energy

This seems to be someway to cheat, doesn’t it? If you replaced the magnets and the magnetic interactions with springs, would the same thing happen? No. Then what is going on here? Why does the final ball leave faster than the initially moving ball? In terms of energy, clearly kinetic energy is not conserved. However, the total energy should be conserved.

Drawings.key

In terms of work-energy, I can think of the balls and the magnets as closed system. This means there is no work done and the energy equation can be written as:

La te xi t 1 4

Since the final ball speed is greater than the initial, the change in kinetic energy is a positive value. This means that the change in magnetic potential would have to be negative. Just what the heck is magnetic potential energy? Well, think of it this way. One ball on one side of the magnet plus 3 on the other takes less work to create than 4 on one side and none on the other. That is about the best I can say without getting too complicated. Momentum

Although the kinetic energy is not conserved, the momentum should be conserved. Why? It has to do with forces and time. Here is a diagram of the same balls before the collision.

Drawings.key 1

Since forces are an interaction between objects, the force on the initially moving ball must be the same magnitude as the force the moving ball exerts on the rest of the stuff. Further, the time these forces act on each other have to also be the same. Looking at the momentum principle, it says (for the moving ball):

La te xi t 1 5

Same force (magnitude) and same time means the other stuff will have the same change in momentum (magnitude). This is conservation of momentum. It is a consequence of forces interacting in a closed system. Momentum Reality Check

Come with me. We will go to the lab and see if momentum is really conserved. Of course, there is one small thing. There is a frictional force on the rolling balls that is small. Less small is the frictional force on the magnets. But we can try anyway.

Here I reproduced the Gauss gun, but at a better viewing angle.

Using Tracker video analysis, I get this plot of the position of the first moving ball.

Notice that I gave it a little push so that it started with a horizontal velocity of about 0.034 m/s. But before it collided, it slowed down before it sped up. It had a minimum horizontal speed of 0.025 m/s and right before it collided, it had a speed of about 0.29 m/s. I suspect the ball slowed down a bit because of the frictional force. For momentum purposes, I will assume the speed of the ball before it started interacting was 0.025 m/s. And if the ball had a mass of 67 grams, this would make the total initial x-momentum – 0.00168 kg*m/s.

What about after the interaction? Here I have two objects moving: the launched ball and the other balls and magnets and stuff. Here is the motion of the launched ball.

Launched

It has a x-velocity of -1.895 m/s to give it an x-momentum of -.127 kg*m/s. The motion of the magnet is a little trickier. Why? Because there is some clear friction there. Here is the motion of the recoil stuff.

It looks like it has a constant acceleration – which makes sense. If there is a constant frictional force, there would be a constant acceleration. However, I don’t really care about the friction. I care about “initial” x-velocity. Here, “initial” means the x-velocity RIGHT after the collision. So, the quadratic fit to that data gives me the position as a function of time. The x-velocity as a function of time is the derivative (with respect to time) of the position function. This means I have the following for position and velocity.

WARNING. The a above is NOT the acceleration. It is the fit parameter, that is all. I used the same letters as from Tracker. Tracker gives these parameters (a,b,c) from the fit. To find the initial velocity, I just need to know a, b and the time. Looking at the graph, it looks like the collision happened around time t = 2.052 seconds. Using this time, I get an x-velocity of 0.39 m/s. The objects moving are 3 balls and one magnet. The magnet has a mass of 73.3 grams. This gives the recoiling objects a momentum of 0.107 kg*m/s.

So, how does the initial x-momentum compare to the final x-momentum? Before the interaction, the momentum was -0.0017 kg*m/s. The total final momentum was (-.127 + 0.107) kg*m/s = -0.02 kg*m/s. Yes, this isn’t quite the same as the initial momentum. But really, it isn’t too far off. I am mostly pleased.

Bonus Points: See if you can figure out the coefficient of kinetic friction between the magnet-balls and the track.


Poster Comment:

Comment from source site Trout007 There is an easy explanation Look at where the magnets are. The magnetic force on a ball is a function of it's distance from the magnets. I think it falls off by 1/d^3. The first ball actually hits the magnet where the force is the strongest. The ball that leaves starts 3 balls away from the magnets where the magnetic force is much less. But the momentum transfer doesn't depend much on how many balls are in the way. So the velocity of the first ball right when it hits is pretty close to the velocity of the last ball when it leaves. BUT the ball that leaves doesn't have to overcome much magnetic force so it maintains that velocity. To show it's true start with 2 balls on the right and 3 balls on the left. Roll a ball towards the side with 2 balls and the ball that comes off will have the same speed as the one that hits. I've build many of these and it's fun to play with the configuration. You can put them in series where you make a few groups like this B= ball M= magnet BBMB BBMB BBMB BBMB B You have to adjust the spacing so they don't attract each other. Also I never let the ball directly hit a magnet because eventually you crack them. An ideal configuration would have the magnet embedded into a bar of hard steel so the magnet itself doesn't take any impact at all. (8 images)

Post Comment   Private Reply   Ignore Thread  


TopPage UpFull ThreadPage DownBottom/Latest

#1. To: All (#0)

A K A Stone  posted on  2011-12-27   23:19:24 ET  Reply   Trace   Private Reply  


#2. To: All (#0)

www.youtube.com/watch?v=EBPPc_JAm6g&feature=related

A K A Stone  posted on  2011-12-27   23:27:09 ET  Reply   Trace   Private Reply  


TopPage UpFull ThreadPage DownBottom/Latest

[Home]  [Headlines]  [Latest Articles]  [Latest Comments]  [Post]  [Mail]  [Sign-in]  [Setup]  [Help]  [Register] 

Please report web page problems, questions and comments to webmaster@libertysflame.com